
Challenges in Software Safety for Army Test and Evaluation

Frank Fratrik

U.S. Army Aberdeen Test Center,

Aberdeen Proving Ground, Maryland

As the capabilities of software intensive systems grow so does the complexity of functions

controlled via software. Similarly, software test and evaluation (T&E) efforts have become

increasingly difficult to quantify and scope appropriately. T&E efforts for traditional programs

have hinged on system level testing in realistic or simulated environments to verify and validate

the systems. Application of these traditional methods to software intensive systems continues to

hold value, but it no longer provides exhaustive data. A number of T&E deficiencies are

surfacing in test programs for these software intensive systems as controllability and visibility

related to software functionality decreases. The result is testing that can fail to uncover critical

problems, potentially with catastrophic results. This article describes successes and shortcomings

with current test and analysis methodologies for software intensive systems. As a part of the

Army Test and Evaluation Command (ATEC), the author looks from an unbiased viewpoint

at relevant current practices and the outlook for future T&E in regards to software safety.

Recent examples of Army software test and analysis efforts, current Army T&E guidance for

software safety, and a path forward for increasing confidence in software safety will be

discussed.

Key words: Residual risk; risk; software intensive systems; software safety; T&E current

practices; test and analysis methodologies.

D
evelopmental test (DT) programs for
many military systems over the past
several decades have successfully ver-
ified safety to a high degree of
confidence. However, with the rise

of complexity and criticality allotted to software
control, software test methodologies must be expanded
to achieve the same high confidence required by those
responsible for system safety.

The goal of this discussion is to increase awareness
of software safety and identify practices and methods,
based on existing guidance, which will reduce hazards
associated with military systems that use software to
achieve system safety objectives. The target audience
includes developers, program managers (PMs), ac-
quirers, and others involved in test and evaluation
(T&E) as it relates to system safety.

Because of the data gaps when testing software in a
completed system, analysis of both safety engineering and
software engineering efforts must be accepted as data
points in building a case for software safety. Only after
earlier development efforts have been assessed can the right
system level DT scope and environments be identified.

Current Department of Defense (DoD) software
safety guidance includes a series of analyses in
combination with testing to provide the best confi-
dence for systems with safety critical software. Many
current programs still lack the suggested development
processes and rigor. In recent years this has led to
systems with safety critical software displaying incom-
plete hazard analysis, lack of requirements traceability,
poor design, and insufficient testing. Deficiencies in
these key analysis areas resulted in only a partial data
set being available for safety decision makers.

To fill these data gaps several methods are
considered. Test results ranging from unit level up to
system level will be assessed for their value in software
safety. Relevant analyses, including hazard analysis,
requirements analysis, architectural and detailed design
analysis, and software code analysis, used to compli-
ment test data will also be discussed.

DoD guidance for software safety

Safety Critical (from MIL-STD 882C). A term
applied to a condition, event, operation, process,

ITEA Journal 2009; 30: 409–416

Copyright ’ 2009 by the International Test and Evaluation Association

30(3) N September 2009 409

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
SEP 2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
Challenges in Software Safety for Army Test and Evaluation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Army Aberdeen Test Center,Aberdeen Proving Ground,MD,21005

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

or item of whose proper recognition, control,
performance or tolerance is essential to safe system
operation or use, e.g., safety critical function,
safety critical path, safety critical component.

As previously stated, the goal in this discussion is not
to introduce novel concepts relating to safety critical
software. Instead, shortcomings with adherence to
existing guidance are highlighted and a path forward to
concurrence with those guidelines is identified. Mul-
tiple current resources exist for obtaining software
safety guidance in a DoD context; however, little is
regulatory. In 1999, the Joint Software System Safety
Committee (JSSSC) Software System Safety Hand-
book (JSSSC, 1999) was released, which provides
significant content in regards to identification, devel-
opment, and verification of safety critical software.
This is the most comprehensive single source for DoD
software safety guidance.

Multiple other sources are also available, including
an International Test Operating Procedure (ITOP) for
Safety Critical Software Analysis and Testing (U.S.
Army, 1999) the U.S. Army Communications and
Electronics Command (CECOM) Software System
Safety Guide (U.S. Army, 1992), and the U.S. Naval
Sea Systems Command (NAVSEA) Weapon System
Safety Guidelines Handbook (NAVSEA, 2006). A
draft Software System Safety Policy is also in
circulation for the U.S. Army Aviation and Missiles
Command (AMCOM) (AMCOM, 2008).

These are by no means the only sources of guidance.
It is critical to be aware that guidance for software
safety exists and to find the most relevant information
that applies to your system and its goals.

Software testing versus hardware testing
For those who have been in the T&E domain for a

number of years, it may seem unclear why software
information cannot be obtained as part of a
traditional system level testing for verification of
safety. Software testing limitations are characterized
by the JSSSH E.13.1, General Testing Guidelines as
follows:

‘‘Systematic and thorough testing is clearly
required as evidence for critical software assur-
ance; however, testing is ‘necessary but not
sufficient.’ Testing is the chief way that evidence
is provided about the actual behavior of the
software produced, but the evidence it provides is
always incomplete since testing for non-trivial
systems is always a sampling of input states and
not an exhaustive exercise of all possible system
states.’’ (JSSSC, 1999)

It is because of these limitations that a gap exists when
testing systems with safety critical computer software
components.

Safety Critical Computer Software Compo-
nents (from MIL-STD 882C). Those computer

software components and units whose errors can

result in a potential hazard, or loss of predict-

ability or control of a system.

Generally, traditional system level DT is able to
characterize the system down to the smallest hardware
components. Environments can be simulated for whole
systems or parts of systems. Failures can be isolated and
characterized by looking at failure points. As an
example, system level vibration testing will submit all
hardware elements to the test environment. Elements
such as vehicle chassis, weapon mounts, engine
components, and bolts are all stressed in this test.
Failure points can be visually inspected.

On the contrary, software is not intended to be
characterized by exposure to traditional system level
testing. Complex software will commonly use only a
subset of the total software code to achieve common
mission functionality. This leaves rarely used (but
possibly safety critical) code untested. Specific software
functions can be difficult to stimulate or difficult to
observe for correct output. Consider the example of a
built-in-test (BIT) function achieved via software. The
BIT may require internal subsystem failures to occur to
exercise software code responsible for detection and
reaction. A system level test might require causing
damage to some internal subsystems or it may not be
possible even via destructive testing due to constraints
with observing outputs in a black box test.

Safety critical computer software
component identification

If additional methods are to be applied to gain
confidence in software safety, it is wise to focus the
increased scope on safety critical computer software
components. In order to do this, we must identify what
software in a given system has a safety impact. Software
safety must be considered a subset of system safety and
flow system level hazards down to subsystems that are
relevant. System level hazards should be allocated to
hardware, software, or some combination of both.

Software can play a role in safety in many systems
where it is a cause of a hazard. Examples could be
causing hardware to perform unsafe actions or guiding
an operator to make unsafe decisions. Software can also
be a control of a hazard. It may be used to prevent
hazards or limit severity after a mishap occurs. In either

Fratrik

410 ITEA Journal

case, the software role in system safety must be defined
based on top level hazards related to the entire system.

Software by itself does not impact safety; however,
when coupled with critical hardware the software can
become safety critical. Software that performs func-
tions like these is likely to be safety critical:

N arm, enable, release, launch, fire, or detonate a
weapon system;

N control movement of gun mounts, launchers, and
other equipment;

N control movement of munitions or hazardous
materials;

N monitor the state of the system for purposes of
ensuring its safety;

N sense hazards and/or display information con-
cerning the protection of the system;

N control or regulate energy sources in the system;
N exercise autonomous control over safety critical

hardware;
N generate outputs that display the status of safety

critical hardware systems;
N compute safety critical data.

These are merely a sample of potential examples
derived from the JSSSH, section E.1.1.3 (JSSSC,
1999). For every system a detailed analysis of the
software role in system safety must be conducted.

Increasing confidence in safety
critical software

Moving forward requires the following two assump-
tions:

1. Correct safety critical software functionality is
required for safe system operation.

2. Software is typically not sufficiently characterized
by system-level testing alone.

To bridge the implied gap resulting from these
assumptions, the recommendation is a disciplined
approach to system, safety, and software engineering
that manages software’s role in system safety.

This approach results in evidence that safety is a
prominent part of specifying, designing, building, and
testing safety critical software. Analysis of this evidence
can in itself result in increased confidence in the safety
of associated software. Also, this analysis can be used to
better scope and execute system level safety testing.
JSSSH guidance covers a broad spectrum of analyses
and artifacts; however, the minimum set of informa-
tion required for the software safety analyses in this
discussion includes these elements:

1. Hazard Tracking System (HTS) data,
2. software requirements,

3. software design,
4. software problem reports (SPRs),
5. software test plans and results,
6. safety assessment report (SAR).

Software safety analyses
The analyses described in this section are not

exhaustive but are considered in this discussion to be
the minimum required to support safety decision
makers. In all cases, the number and rigor of software
safety analysis methods should be proportional to the
software hazard criticality, as defined in the JSSSC
Handbook (JSSSC, 1999) and MIL-STD 882C
(DoD, 1993). In some cases, the analyses will be
minimal and aim to prove that software is not safety
critical. For each area, there are typically multiple
different methodologies that can be applied. They are
ideally to be conducted by a safety agency independent
of developers and acquirers, such as the Developmental
Test Command (DTC) in the Army domain. The
safety agent does not have the primary responsibility
for developing these artifacts but is instead a consumer
who uses and assesses them. Nominal responsible
developing entities for Army systems are listed for each
artifact; however, this may vary between organizations
or programs.

Generally, these six elements flow chronologically in
their development, but all will typically mature and
develop iteratively. The value of any one of these
elements is limited in and of itself. The largest benefits
can be realized if all six are analyzed and compared in
the context of each other.

HTS data analysis
Data from a HTS, sometimes called a Hazard

Tracking Database, is typically a PM responsibility in
an Army setting. Often generation of this artifact is
delegated to a developer. This is considered a starting
point for software safety analysis, as it is a primary
source for identification of system level hazards and
subsystems that could contribute to or prevent mishap
occurrence. From a software safety perspective it is key
that hazards allocated to software are clearly identified.
Chapter 12 in Section II of the NAVSEA Weapon
System Safety Guidelines Handbook is a helpful
resource for planning, implementing, and updating
an HTS (NAVSEA, 2006).

Software requirements analysis
Software requirements are normally a developer

responsibility. Software requirements must be derived
to specify the software role in both system functionality
and system safety.

Software Safety

30(3) N September 2009 411

In addition to general requirements best practices for
all requirements, safety requirements should be iden-
tified explicitly. Tracing up to system requirements and
system hazards provides validity. Tracing down to
software test cases, and possibly software design
elements, is needed to allow for verification. All
requirements need to be written in a way that they
are testable.

Software requirements analysis can identify any gaps
in traceability or other shortcomings that could impact
the software artifacts to be derived from the require-
ments specification. More detailed expectations for
derivation and tracing of safety critical software
requirements is detailed in the JSSSH, section 4.3.4
Derive System Safety Critical Software Requirements
and section 4.3.5.3 Traceability Analysis (JSSSC,
1999).

Software design analysis
Software design is typically a developer responsibil-

ity and normally flows out of software requirements.
This can include both architectural design and detailed
design. Software design best practices, such as
maximizing cohesion and minimizing coupling, trans-
late well to the safety domain. Isolation of software
with safety impact in design can decrease the risk of a
safety impact from other outside software modules.

Identification of critical software modules will alert
software maintainers to potential impacts of changing
software code in a safety critical area. Another benefit
is that the impact of changes can be assessed using
design information. This aids in identifying proper
regression test scoping.

There are many design elements that can aid in
coding with safety in mind, such as using interlocks,
safety flags, watchdogs, or other techniques. Each of
these can be considered during software design
analysis. More detailed expectations for design of
safety critical software can be found in the JSSSH,
section 4.3.6 Detailed Software Design, Subsystem
Hazard Analysis (JSSSC, 1999).

Developer SPR analysis
SPR generation is typically a developer responsibility

and begins as early as practical after software
implementation has begun. Formal SPR development
ensures that all discovered problems are addressed and
tracked to closure. SPRs that are not closed in a given
software version can then be compiled and assessed for
their impact.

It is important that SPRs be categorized for
criticality. Those with safety impact should be made
explicit and given highest priority for fix implementa-
tion. SPRs intended for closing should show trace-

ability to test cases for verification of a successful fix.
SPR tracking as a function of time can also be a useful
metric for considering software maturity or complete-
ness of test. SPR tracking is supported by the JSSSH,
section E.13.1 General Testing Guidelines (JSSSC,
1999).

Developer software test planning
and execution

SPRs are typically generated as a result of testing,
which is the next focus area. To be clear, this is
developer-run software focused testing, scoped to fully
verify software requirements. Often this is called
software formal qualification test (FQT). This may
or may not use the full, complete system. Many times
parts of the system are simulated or decomposed to
increase the ability to stimulate inputs or observe
outputs of the software.

This is the first activity where it is highly desirable to
have a participant attend as a representative of the
independent safety agency. The results need to be
considered a primary data source for software safety.
On-site involvement increases confidence when lean-
ing heavily on a developer-run event.

Since this is a software requirements–based test,
traceability from requirements should be evident.
Specifically, identification of test cases aimed to verify
safety requirements must be identified in test plan and
test description documents. More rigorous testing
should be executed on safety elements to ensure that
off nominal or abnormal execution cannot result in a
hazard. Examples could be fault injection, boundary
condition testing, zero value testing, or input rate
variation.

Software testing in this environment should measure
the amount of software code that is exercised by
testing, and justify any shortcomings, especially for
untested safety critical code. More detailed expecta-
tions for developer software test planning and execu-
tion can be found in the JSSSH, section 4.4.1 Software
Safety Test Planning and section E.13.3 Formal Test
Coverage (JSSSC, 1999).

SAR analysis
The SAR is typically a PM responsibility in an

Army setting. It can be considered a snapshot in time
of the current system and its safety implications. A
current description of system hazard analyses is
mapped against the intended use, which could be a
test event, demonstration, or field use. Required
mitigations should be evident for those who will
control the environment where the system is to be
used.

Fratrik

412 ITEA Journal

For software, there should be a description of the
software safety approach, to include design constraints,
coding standards, or other applicable software safety
methodology. There must be a description of the safety
characteristics of the specific hardware and software
configuration intended for use. Open and residual
hazards with causes allocated to software should be
identified. Chapter 27 in Section II of the NAVSEA
Weapon System Safety Guidelines Handbook is a
potential resource when generating and updating a
SAR (NAVSEA, 2006).

Software safety analyses summary
Without delivery of the artifacts in this section, the

resulting analyses cannot be completed. The result of
this information gap is that hazard contributions
allocated to software should be considered to have
elevated probability.

A second key point is that this information must be
developed and delivered in order to lower software-
related hazard probabilities even for ‘‘off-the-shelf’’ or
prototype systems. The choice to buy products to
perform safety critical functions or resource limitations
does not preclude them from being assessed for their
correct and safe performance.

Last, this is an iterative set of analyses. Any resulting
outputs apply only to the configuration and environ-
ment for which the analyses were completed. As
changes are made, each element should be revisited and
considered for its impact.

Levels of software safety testing
Traditionally, upon delivery of the SAR, indepen-

dent system level DT can begin. Verification of safety
requirements should occur at the highest level of
system integration possible; however, some safety
critical software requirements will not be verifiable at
the system test level.

As discussed previously, software FQTs are often a
primary source for verification of software. Even at this
FQT level, it will sometimes not be possible to fully
verify all requirements of the software.

It is less desirable, but in some cases software
integration tests and software unit tests can be used as
data sources to achieve complete requirements or SPR
fix verification. In this lower-level testing it is critical
to identify assumptions and limitations of the test
environment.

Although not preferred, static software code inspec-
tion can be used as a verification method for
requirements not able to be verified via dynamic
testing. Normally this method is not used as a primary
verification source for a safety requirement but can be a
good secondary source for additional verification
confidence. This flow and scope of sources for safety
testing is shown in Figure 1.

In addition to full verification of software require-
ments during developer testing, independent DT
should include system level software-focused safety
testing. This testing should be designed to compliment
developer testing and address capabilities as well as

Figure 1. Levels of software testing (from Joint Software System Safety Committee (JSSSC) Software System Safety Handbook,
section 2.6.4.2.2).

Software Safety

30(3) N September 2009 413

requirements. System level software test design can
focus time spent testing on safety-related software
functionality. Training is key to allowing independent
testers to identify expected test results. At this system
level, exploratory testing is encouraged—often the
defects not found during requirements-based testing
are found during exploratory testing.

It is imperative to be aware that the primary method
for showing safe software is verification of safety
critical software requirements via test.

Residual risk identification
At the completion of Army DT, there is often a

need to identify residual risks prior to soldier
interaction with the system. This is done through
DTC-issued safety releases and safety confirmations.
Following analyses and test completion, residual risk
can be derived from the total risk subset, as visualized
in Figure 2.

For systems with safety critical computer software
components, it is essential that any residual risk
documents are limited to well-defined, tested config-
urations. Residual risk outputs should trace observed
test results and safety analysis to identify residual
system hazards. If the software is modified, the residual
risk outputs must be updated or amended. Having
requirements and design analyses completed will help
properly scope any required regression testing without
excessive budget or schedule impact.

A key difference in assessing residual risks relating to
software is awareness of expected reliability. Software
reliability considers errors resulting from specification,
design, or implementation that are unfound during
testing. Historically, software can be shown to meet a
failure rate of no better than the 1023 to 1024 range

according to the American National Standards Insti-
tute (ANSI) R-013-1992 and T/AST/046 (Nuclear
Safety Directorate [UK], 2003). Goals for system
safety often include showing 1026 or better residual
probability of mishap occurrence. Because of this,
hazard mitigation relying on software should include
other mitigation methods in hardware and/or proce-
dural use to reduce probabilities to an acceptable level.
Even with a most rigorous software development and
test effort, the lower ends of mishap probability may be
unreachable via software alone. Systems relying on
software as the sole mitigation to a hazard should
consider the residual risk if probability falls in the 1023

to 1024 range, which is labeled remote mishap

probability in MIL-STD 882 (DoD, 1993). Initial
design efforts can greatly reduce the amount and
impact of safety critical software.

Application
The following are recent examples that show

limitations associated with relying solely on system
level testing to achieve confidence in system safety.
Also, expected results of applying the existing DoD
software safety guidance detailed in the previous
sections are described.

Case 1—weaponized Unmanned Ground
Vehicle (UGV)

In this example, a small, weaponized UGV system
entered DT with weak system hazard analysis. Also, it
had no hazard allocation to software, software
requirement specification, software design documen-
tation, or software requirements–based testing.

Actual results during DT included occurrence of
multiple uncommanded motion events that were not

Figure 2. Total risk versus residual risk (from Joint Software System Safety Committee (JSSSC) Software System Safety Handbook,

section 3.3).

Fratrik

414 ITEA Journal

prevented or halted by system software. Also, system-
level software safety testing discovered that the system
was capable of weapon fire via a switch other than the
trigger.

The result via proper application of existing software
safety guidance would have been earlier identification
of elevated probability for hazards during test and field
use associated with both uncommanded platform
motion and uncommanded weapon firing.

Case 2—large, fast UGV
In this example, a 5,000-lb UGV, capable of tele-

operation up to 50 mph, entered government DT with
no hazard analysis, software requirement specification,
software design documentation, or software require-
ments–based testing.

Actual results included system-level software safety
testing, discovering that remote vehicle power loss left
actuators in their previous state. The system was
driving when power loss was induced. The result was
continued UGV motion at the original speed with no
method to emergency stop the UGV.

The result via proper application of existing software
safety guidance would have been earlier identification
of elevated probability for hazard during DT and field
use associated with uncommanded motion.

Case 3—remote fire control system
In this example, a remote fire control system entered

DT with incomplete system hazard analysis. Also
software requirement specification, software design
documentation, and evidence of software require-
ments–based testing were not delivered.

Safety findings were initially prepared solely using
system level test results. Software safety artifacts were
requested from the developer and delivered for
analysis. Analytical results showed five additional
system hazards, three of which had catastrophic
severity, to have residual risk.

These risks did not manifest during testing and were
not apparent without consideration of analytical
outputs. Proper residual risk identification then
allowed mitigations to be put in place to address the
risks. Following iterations were able to further reduce
the risks via design changes.

Application summary
Each of these systems required significant external

mitigations to allow safe system testing. In all cases,
significant safety issues were discovered late in the
development cycle and resulted in costly rework to
correct the problems. Fortunately, the problems in the
first two cases were discovered through exploratory
testing; however, consistency of problem discovery

would increase significantly assuming a structured
integration and test series leading up to system level
DT. Each of the UGV systems had only system level
test results as available inputs for safety decision
makers, resulting in higher probabilities of residual
hazard occurrence.

True value can be seen in case three, where hazards
were identified analytically, mitigated via design when
feasible, and accurately elevated for acceptance when
needed.

Benefits to system safety
The primary safety benefits of consistently applying

existing software safety guidance would be seen in
several ways. Test safety would be increased by raising
awareness of potential hazards during test. Those
executing DT would not be exposed to unknown
hazards.

Another critical benefit is that safety releases and
safety confirmations could most accurately present
residual hazards allocated to software. Appropriate
mitigation techniques could be identified to safely
maximize system functionality during testing, demon-
strations, or field use.

In addition, the disciplines identified for generating
software safety outputs are in line with current best
practices for software engineering identified in the
Institute of Electrical and Electronics Engineers
(IEEE) 12207 ‘‘Standard for Information Technolo-
gy–Software Life Cycle Processes’’ (IEEE, 1998) or
the Software Engineering Institute (SEI) Capability
Maturity ModelH Integration (CMMI) (Carnegie
Mellon, 2006). The added benefit would be promotion
of software quality, software maintainability, software
testability, and the discovery of software problems
earlier in the life cycle when they are cheaper to fix.

Conclusions
System functionality executed by complex software

has been increasing and will continue to grow in the
future. System hazards related to software will be more
important to quantify, while at the same time they
cannot be exhaustively characterized through traditional
system level safety testing. Those involved in T&E must
be aware that DoD guidance is in place for software
safety. Only through awareness and application of these
practices to software specification, design, implementa-
tion, and testing can we ensure safe and appropriate tests
resulting in credible residual hazard identification. %

FRANK FRATRIK is an electrical engineer at the US Army

Aberdeen Test Center in Aberdeen Proving Ground, MD.

Software Safety

30(3) N September 2009 415

He has been performing test and analysis on software
intensive systems for the past 5 years. Fratrik has been the
system software test lead for unmanned ground vehicle
systems with varied size and capability. His test work has
also included software controlled systems such as: land-
mines, artillery fuzes, fire control systems, and other
ground vehicle systems. Fratrik holds a B.S. in Electrical
Engineering from Pennsylvania State University, Uni-
versity Park, PA and is also nearing completion of a M.S.
in Systems Engineering from Johns Hopkins University,
Baltimore, MD.

References
American National Standards Institute (ANSI).

1992. ANSI R-013-1992, Software Reliability, 1992.
http://webstore.ansi.org/RecordDetail.aspx?sku5R-
013-1992 (March 5, 2009).

Carnegie Mellon. 2006. Capability Maturity Model
(CMMI) CMMIH for Development, Version 1.2. Car-
negie Mellon Software Engineering Institute, August
2006. Pittsburgh, Pennsylvania: Carnegie Mellon
Software Engineering Institute.

Department of Defense (DoD). 1993. MIL-STD
882C, System Safety Program Requirements, 19 January
1993. Wright Patterson Air Force Base, Ohio: HQ Air
Force Materiel Command (SES). http://crc.army.mil/
guidance/system_safety/882C.pdf (accessed March 5,
2009).

IEEE. 1998. IEEE 12207, Standard for Information
Technology-Software Life Cycle Processes. New York,

New York: Institute of Electrical and Electronics
Engineers.

Joint Software System Safety Committee (JSSSC).
1999. Joint Software System Safety Committee (JSSSC)
Software System Safety Handbook, December 1999.
Washington, D.C.: Joint Services Computer Resources
Management Group, U.S. Navy, U.S. Army, and the
U.S. Air Force. http://www.system-safety.org/Document/
Software_System_Safety_Handbook.pdf (accessed March
5, 2009).

NAVSEA. 2006. NAVSEA Weapon System Safety
Guidelines Handbook, SW020-AH-SAF-010, 1 February
2006. Indian Head, Maryland: Naval Sea Systems
Command Warfare Center Enterprise, Naval Support
Facility, Indian Head.

Nuclear Safety Directorate [UK]. 2003. T/AST/046,
Technical Assessment Guide: Computer Based Safety
Systems, (United Kingdom) Nuclear Safety Directorate—
Business Management System, 10 January 2003. http://
www.hse.gov.uk/foi/internalops/nsd/tech_asst_guides/
tast046.pdf (accessed March 5, 2009).

U.S. Army. 1992. CECOM Software System Safety
Guide, TR 92-02, May 1992. Washington, D.C.: U.S.
Department of the Army Headquarters.

U.S. Army. 1999. FR/GE/UK/US International Test
Operations Procedure (ITOP) 1-1-057 Safety Critical
Software Analysis and Testing, 4 June 1999. Washington,
D.C.: U.S. Department of the Army Headquarters.

U.S. Army Aviation and Missiles Command
(AMCOM). 1998. Software System Safety Policy,
AMCOM Reg 385-17. Draft, March 15, 2008.

Fratrik

416 ITEA Journal

